
Short communication

Exact thresholds for low-density parity-check codes over the
binary erasure channel

Jianjun Mu a,*, Xiaopeng Jiao a, Xinmei Wang b

a School of Computer Science and Technology, Xidian University, Xi’an 710071, China
b State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China

Received 13 March 2008; received in revised form 18 December 2008; accepted 28 December 2008

Abstract

A simple method for determining the threshold of irregular LDPC codes over the binary erasure channel (BEC) under message-pass-
ing decoding is proposed. An exact formula for calculating the threshold of irregular LDPC codes over the BEC is proved. This gener-
alizes the known result on the threshold of regular LDPC codes to irregular LDPC codes. Moreover, our new method can avoid the
computation of the inverse of the degree distribution function for irregular LDPC codes. Numerical results demonstrate the correctness
of our proposed method.
� 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in

China Press. All rights reserved.
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1. Introduction

The binary erasure channel (BEC), presented by Elias in
1955 [1], has lately become increasingly popular, as it can
be used to model Internet transmission systems. Low-den-
sity parity-check (LDPC) codes over the BEC have been
studied extensively lately [2–12].

LDPC codes can be characterized by a bipartite graph
between a set of left nodes called variable nodes and a set
of right nodes called check nodes. A degree distribution
for the graph is the pair ðk; qÞ, where kðxÞ and qðxÞ are
functions of the form

kðxÞ ¼
X‘
i¼2

kixi�1; qðxÞ ¼
Xr

i¼2

qix
i�1

and kiðqiÞ denote(s) the fraction of edges in the bipartite
graph that are connected to a left (right) node of degree i

[2,3]. If kðxÞ ¼ xdv�1 and qðxÞ ¼ xdc�1, then the code is said
ðdv; dcÞ� regular, otherwise irregular. In Ref. [2], Luby
et al. presented an iterative message-passing (MP) algo-
rithm for decoding LDPC codes over the BEC and showed
that the proposed decoding algorithm is successful on a
random graph with degree distribution ðk; qÞ and initial
erasure probability d if

dkð1� qð1� xÞÞ < x ð1Þ

on the interval ð0; dÞ [2].
Density evolution for the BEC can be expressed as fol-

lows. For a given degree distribution ðk; qÞ, the expected
fraction of erasure messages emitted in the n-th iteration,
call it xn, is given by the recursion

xn ¼ xnðdÞ ¼ dkð1� qð1� xn�1ÞÞ ð2Þ

where n P 1 and x0, the initial fraction of erasures is equal
to the erasure probability d of the channel [3]. We are inter-
ested in the supremum of d; d < 1, such that xnðdÞ con-
verges to zero as n tends to infinity. The largest value of
d satisfying (1) for the given parameter pair ðk; qÞ is called
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the threshold and denoted by d�ðk; qÞ [3]. That is to say, the
threshold d�ðk; qÞ associated with the degree distribution
ðk; qÞ is defined as

d�ðk; qÞ ¼ sup dj0 < d < 1; lim
n!1

xnðdÞ ¼ 0; x0 ¼ d
n o

Some results on the threshold of LDPC codes over the
BEC under MP decoding have been achieved [8–11]. In
Refs. [8,9], an exact formula of the threshold for
ðdv; dcÞ� regular LDPC codes over the BEC under MP
decoding was presented. This exact formula was given by

d�ðk; qÞ ¼ min
x2½0;1�
ff1ðxÞg

where f1ðxÞ ¼ ð1� xÞð1� xdc�1Þdv�1. In Ref. [11], by analyz-
ing EXIT (Extrinsic Information Transfer) charts, Hehn
et al. presented a method for determining the threshold
of irregular LDPC codes over the BEC under MP decod-
ing. However, the disadvantage of this method is that it
is necessary to compute the inverse of the degree distribu-
tion function used for determining the code threshold.
Moreover, it is impossible to solve this inverse function
for general irregular LDPC codes over the BEC.

In this paper, we propose a simple method for determin-
ing the threshold of irregular LDPC codes over the BEC
under the MP decoding algorithm. By generalizing the
results of the threshold of regular LDPC codes presented
in Refs. [8,9] to irregular LDPC codes, we show an exact
formula for calculating the threshold of general LDPC
codes over the BEC. The proposed method does not
require the computation of the inverse of the degree distri-
bution function for irregular LDPC codes. Finally, some
numerical evidence is provided to show the correctness of
this formula.

2. Lemmas

As stated before, if dkð1� qð1� xÞÞ < x on the interval
ð0; dÞ, then the decoder of LDPC codes over the BEC under
MP decoding can correct a d fraction of erasures (losses).
This condition can be translated to d < xkð1� qð1� xÞÞ.
In order to determine the threshold d�ðk; qÞ of LDPC codes
over the BEC, let f be defined in ½0; 1Þ by

f ðxÞ ¼ 1� x
kð1� qðxÞÞ ð3Þ

Thus we have

f ðxÞ ¼ 1� x

P‘
i¼2

ki 1�
Pr
j¼2

qjxj�1

 !i�1

¼ 1

k2hðxÞ þ
P‘
i¼3

kið1� xÞi�2½hðxÞ�i�1

where hðxÞ ¼
Pr

i¼2qi

Pi�2
j¼0xj.

In order to propose a simple method for determining the
threshold of irregular LDPC codes over the BEC under the
MP decoding algorithm, the function s is defined in ½0; 1� by

sðxÞ ¼ 1

k2hðxÞ þ
P‘
i¼3

kið1� xÞi�2½hðxÞ�i�1

ð4Þ

In order to determine the threshold of the general class
of LDPC codes, we start with the following lemmas.

Lemma 1. For a given degree distribution ðk; qÞ, let s be the

function as defined above in (4). Then the minimum of sðxÞ in

½0; 1� exists.

Proof. By the definition of s, we note that sðxÞ is a contin-
uous function in ½0; 1�. By Weierstrass’ second theorem
[13], we obtain that the minimum of sðxÞ in ½0; 1� exists. h

Lemma 2. For a given degree distribution ðk; qÞ with the era-

sure probability d 2 ð0; 1Þ, define the function gðd; xÞ ¼
dkð1� qð1� xÞÞ in ½0; 1�: The sequence fxnðdÞg is defined

by xn ¼ xnðdÞ ¼ dkð1� qð1� xn�1ÞÞ as in (2). For every
d 2 ð0; 1Þ, if gðd; xÞ < x for all real x 2 ð0; 1Þ, then we have

lim
n!1

xnðdÞ ¼ 0.

Proof. Suppose for every d 2 ð0; 1Þ; gðd; xÞ < x for all real
x 2 ð0; 1Þ. By the definition of g and fxnðdÞg we have

xn ¼ dkð1� qð1� xn�1ÞÞ ¼ gðd; xn�1Þ < xn�1

for every integer n � 1. Note that kð0Þ ¼ qð0Þ ¼ 0 and
kð1Þ ¼ qð0Þ = 1. It is clear that

0 < xn ¼ dkð1� qð1� xn�1ÞÞ < d:

These two results imply that the sequence fxnðdÞg is
bounded and strictly decreasing for every d 2 ð0; 1Þ. Thus,
it follows that the limit lim

n!1
xnðdÞ exists.

Let lim
n!1

xnðdÞ ¼ x00 for some x00 2 ð0; 1Þ. Since gðd; xÞ is a
continuous function of x for x 2 ½0; 1�, we must have
gðd; x00Þ ¼ x00. In conjunction with gðd; 0Þ ¼ 0, by the
uniqueness of the limit x00, we obtain x00 ¼ 0. This says
lim
n!1

xnðdÞ ¼ 0 for every d 2 ð0; 1Þ. h

3. Exact thresholds for LDPC codes

In this section, our main purpose is to show that the
threshold d�ðk; qÞ of LDPC codes over the BEC under
MP decoding is equal to the minimum of sðxÞ in ½0; 1�.
Using Lemmas 1 and 2, we obtain the following theorem.

Theorem 1. Let f and s be the functions as defined above in
(3) and (4), respectively. For LDPC codes over the BEC
with the degree distribution ðk; qÞ and the initial fraction of
erasures d 2 ð0; 1Þ, the code threshold d�ðk; qÞ below which
the MP decoding leads to vanishing erasure probability is
given by

d�ðk; qÞ ¼ min
x2½0;1�
fsðxÞg:
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Proof. Let g be the function defined in ½0; 1� by gðd; xÞ ¼
dkð1� qð1� xÞÞ. Let

S ¼ dj0 < d < 1; lim
n!1

xnðdÞ ¼ 0
n o

;

where fxnðdÞg is as defined recursively in (2). By Lemma 1,
we note that min

x2½0;1�
fsðxÞg exists. Thus, let s� ¼ min

x2½0;1�
fsðxÞg.

Note that f ðxÞ ¼ sðxÞ for all x 2 ½0; 1Þ.
First we prove that d � s� for all d 2 S. Suppose, to get a

contradiction, there exists d0 2 S such that d0 > s�. By the
continuity of s, we can choose x0 2 ð0; 1� such that

d0 > sð1� x0Þ ¼ f ð1� x0Þ ¼ x0

kð1� qð1� x0ÞÞ :

Thus we note that d0kð1� qð1� x0ÞÞ > x0 > 0. Then

d0 � gðd0; x0Þ ¼ d0kð1� qð1� x0ÞÞ > x0 > 0 ð5Þ
When x0 ¼ d0, it follows from (5) and the fact that

gðd0; xÞ is a strictly increasing function in its second argu-
ment for x 2 ½0; 1� that

x1ðd0Þ ¼ gðd0; x0Þ ¼ gðd0; d0Þ > gðd0; x0Þ > x0 > 0

and

x2ðd0Þ ¼ gðd0; x1Þ > gðd0; x0Þ > x0 > 0:

Note that kð0Þ ¼ qð0Þ ¼ 0 and kð1Þ ¼ qð0Þ ¼ 1. It is
clear that 0 < xnðd0Þ ¼ d0kð1� qð1� xn�1ÞÞ < d0. It is easy
to note that

x1ðd0Þ ¼ gðd0; x0Þ ¼ d0kð1� qð1� x0ÞÞ < d0 ¼ x0

and

x2ðd0Þ ¼ gðd0; x1Þ < gðd0; x0Þ ¼ x1ðd0Þ:
By induction, we note that fxnðd0Þg is a strictly decreas-

ing sequence and xnðd0Þ > x0 > 0 for all integers n � 1.
These two results imply that the limit lim

n!1
xnðd0Þ exists

and lim
n!1

xnðd0Þ � x0 > 0: This contradicts the fact that

lim
n!1

xnðdÞ ¼ 0 for any d 2 S.

Next, we prove that for any given sufficiently small
e > 0, there exists d00 2 S such that d00 > s� � e. Since
0 < s� � 1 and sðxÞ is a continuous function in ½0; 1�, we
can choose sufficiently small e > 0, such that s� � e > 0.
Let d00 ¼ s� � e=2. It is easy to note that 1 > d00 ¼
s� � e=2 > s� � e > 0 and d00 2 ð0; 1Þ. In order to show
d00 2 S, we need to only prove lim

n!1
xnðd00Þ ¼ 0. Since

d00 ¼ s� � e=2 < s�, then for every x 2 ð0; 1�, we have

gðd00; xÞ ¼ d00kð1� qð1� xÞÞ

¼ d00
x

f ð1� xÞ <
s�

sð1� xÞ x � x ð6Þ

When d ¼ d00, it follows from (6) and Lemma 2 that
lim
n!1

xnðd00Þ ¼ 0.

Hence it is concluded from these two results that
sup S ¼ s� [13]. By the definition of the threshold and
Lemma 1, we obtain d�ðk; qÞ ¼ min

x2½0;1�
fsðxÞg.

This completes the proof. h

Remark 1. It should be pointed out that in this theorem the
conclusion d�ðk; qÞ ¼ min

x2½0;1�
fsðxÞg cannot be replaced by

d�ðk; qÞ ¼ min
x2½0;1�

ff ðxÞg since the minimum of f ðxÞ in

½0; 1� min
x2½0;1�

ff ðxÞgmay not exist. In the following we provide

an example to prove the nonexistence of the minimum of
f ðxÞ in ½0; 1� min

x2½0;1�
ff ðxÞg:

Now we consider irregular LDPC codes over the BEC
with the following degree distribution ðk; qÞ as follows:

kðxÞ ¼ 0:4706xþ 0:2353x7 þ 0:2941x29

qðxÞ ¼ 0:6864x6 þ 0:3136x7:

For this ðk; qÞ, the curve of sðxÞ corresponding to the
degree distribution ðk; qÞ in Theorem 1 is given in Fig. 1,
which shows x ¼ 1 is the point at which sðxÞ attains its min-
imum in ½0; 1�. Note that f ðxÞ ¼ sðxÞ for all x 2 ½0; 1Þ. How-
ever, x ¼ 1 is a pole for f ðxÞ. It follows that from these two
facts given above that the minimum of f ðxÞ in ½0; 1Þ does
not exist. However, the proposed generalization can solve
this problem.

In fact, by applying numerical solution methods and
programs like Matlab to (4) corresponding to the degree
distribution ðk; qÞ, we obtain that the code threshold

d�ðk; qÞ ¼ min
x2½0;1�
fsðxÞg ¼ sð1Þ ¼ 0:336567

whereas for LDPC codes over the BEC with this degree
distribution ðk; qÞ, by means of density evolution we obtain
the same result.

4. Numerical results

In order to demonstrate the correctness and the exact-
ness of the proposed formula, this section compares the
results obtained from density evolution for the BEC with
the results obtained from our new method. By using the
binary search method we find the threshold by means of
density evolution. The number of iterations for the density
evolution formula (2) is 103 and 105, respectively.

Now we consider irregular LDPC codes over the BEC
with the two representative degree distributions ðk0; q0Þ
and ðk00; q00Þ proposed in Ref. [4] as follows:

Fig. 1. The curve of sðxÞ corresponding to the degree distribution ðk;qÞ.
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(i) k0ðxÞ ¼ 0:0769xþ 0:6923x2 þ 0:2308x5

q0ðxÞ ¼ 0:4615x5 þ 0:5385x6

(ii) k00ðxÞ ¼ 0:4706x2 þ 0:2353x7 þ 0:2941x29

q00ðxÞ ¼ 0:7843x9 þ 0:2157x10:

By applying numerical solution methods or programs
like Matlab to (4), we obtain the exact thresholds

d�ðk0; q0Þ ¼ 0:43612820632214

and

d�ðk00; q00Þ ¼ 0:42058449110647:

For these two degree distributions ðk0; q0Þ and ðk00; q00Þ,
by means of density evolution we obtain the approximate
thresholds of the corresponding LDPC codes with the rate
1/2 over the BEC under MP decoding. Table 1 shows the
results of the threshold for irregular LDPC codes over
the BEC with the degree distributions ðk0; q0Þ and ðk00; q00Þ.
The last three columns in Table 1 demonstrate the correct-
ness and the exactness of Theorem 1. Bold typed digits in
Table 1 differ from the exact threshold.

For LDPC codes over the BEC with the degree distribu-
tions ðk0; q0Þ and ðk00; q00Þ, we note that the code thresholds
still differ in the magnitude of 10�5 when using iterations of
103 and 10�9 for 105 iterations. The results from density
evolution could be improved by a more extensive search,
but this would lead to an even higher computational com-
plexity, whereas our numerical results given above show
that our results are exact and can be calculated very
quickly.

For determining the threshold of irregular LDPC codes
over the BEC under MP decoding, when using the method
presented by Hehn et al. in Ref. [11], we must compute the
inverse of the degree distribution function qðxÞ. However,
it is impossible to solve the inverse of this function, whereas
our new method can overcome this shortcoming.

5. Conclusion

We show an exact formula for calculating the threshold
of LDPC codes over the BEC under MP decoding. Thus,

the result on the threshold of regular LDPC codes pre-
sented in Refs. [8,9] can be generalized to irregular LDPC
codes.

Furthermore, when using the method presented by
Hehn et al. in Ref. [11] for determining the threshold of
irregular LDPC codes over the BEC under MP decoding,
we must find the inverse of the degree distribution function
used, whereas our new method can avoid this inverse oper-
ation. Numerical results demonstrate the correctness of our
formula. These theoretical results on code thresholds will
benefit the study of the asymptotic behavior of LDPC
codes.
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Degree
distribution

Threshold, density evolution Exact threshold

103 Iterations 105 Iterations

ðk0; q0Þ 0.43611812275537 0.43612820534656 0.43612820632214
ðk00;q00Þ 0.42057816993587 0.42058449049028 0.42058449110647
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